Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Viruses ; 15(5)2023 05 09.
Article in English | MEDLINE | ID: covidwho-20237088

ABSTRACT

During the COVID-19 pandemic, drug repurposing represented an effective strategy to obtain quick answers to medical emergencies. Based on previous data on methotrexate (MTX), we evaluated the anti-viral activity of several DHFR inhibitors in two cell lines. We observed that this class of compounds showed a significant influence on the virus-induced cytopathic effect (CPE) partly attributed to the intrinsic anti-metabolic activity of these drugs, but also to a specific anti-viral function. To elucidate the molecular mechanisms, we took advantage of our EXSCALATE platform for in-silico molecular modelling and further validated the influence of these inhibitors on nsp13 and viral entry. Interestingly, pralatrexate and trimetrexate showed superior effects in counteracting the viral infection compared to other DHFR inhibitors. Our results indicate that their higher activity is due to their polypharmacological and pleiotropic profile. These compounds can thus potentially give a clinical advantage in the management of SARS-CoV-2 infection in patients already treated with this class of drugs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Pandemics , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Drug Repositioning/methods
2.
Viruses ; 15(5)2023 05 15.
Article in English | MEDLINE | ID: covidwho-20236616

ABSTRACT

Coronaviruses, including SARS-CoV-2, SARS-CoV, MERS-CoV and influenza A virus, require the host proteases to mediate viral entry into cells. Rather than targeting the continuously mutating viral proteins, targeting the conserved host-based entry mechanism could offer advantages. Nafamostat and camostat were discovered as covalent inhibitors of TMPRSS2 protease involved in viral entry. To circumvent their limitations, a reversible inhibitor might be required. Considering nafamostat structure and using pentamidine as a starting point, a small set of structurally diverse rigid analogues were designed and evaluated in silico to guide selection of compounds to be prepared for biological evaluation. Based on the results of in silico study, six compounds were prepared and evaluated in vitro. At the enzyme level, compounds 10-12 triggered potential TMPRSS2 inhibition with low micromolar IC50 concentrations, but they were less effective in cellular assays. Meanwhile, compound 14 did not trigger potential TMPRSS2 inhibition at the enzyme level, but it showed potential cellular activity regarding inhibition of membrane fusion with a low micromolar IC50 value of 10.87 µM, suggesting its action could be mediated by another molecular target. Furthermore, in vitro evaluation showed that compound 14 inhibited pseudovirus entry as well as thrombin and factor Xa. Together, this study presents compound 14 as a hit compound that might serve as a starting point for developing potential viral entry inhibitors with possible application against coronaviruses.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2 , Benzamidines/pharmacology , Virus Internalization , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
3.
Virol J ; 20(1): 99, 2023 05 24.
Article in English | MEDLINE | ID: covidwho-20230955

ABSTRACT

Several approaches have been developed to analyze the entry of highly pathogenic viruses. In this study, we report the implementation of a Bimolecular Multicellular Complementation (BiMuC) assay to safely and efficiently monitor SARS-CoV-2 S-mediated membrane fusion without the need for microscopy-based equipment. Using BiMuC, we screened a library of approved drugs and identified compounds that enhance S protein-mediated cell-cell membrane fusion. Among them, ethynylestradiol promotes the growth of SARS-CoV-2 and Influenza A virus in vitro. Our findings demonstrate the potential of BiMuC for identifying small molecules that modulate the life cycle of enveloped viruses, including SARS-CoV-2.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Virus Internalization , Biological Assay , Gene Library
4.
Int J Mol Sci ; 24(9)2023 May 05.
Article in English | MEDLINE | ID: covidwho-2312704

ABSTRACT

The binding properties of synthetic and recombinant peptides derived from N-terminal part of ACE2, the main receptor for SARS-CoV-2, were evaluated. Additionally, the ability of these peptides to prevent virus entry in vitro was addressed using both pseudovirus particles decorated with the S protein, as well as through infection of Vero cells with live SARS-CoV-2 virus. Surprisingly, in spite of effective binding to S protein, all linear peptides of various lengths failed to neutralize the viral infection in vitro. However, the P1st peptide that was chemically "stapled" in order to stabilize its alpha-helical structure was able to interfere with virus entry into ACE2-expressing cells. Interestingly, this peptide also neutralized pseudovirus particles decorated with S protein derived from the Omicron BA.1 virus, in spite of variations in key amino acid residues contacting ACE2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Chlorocebus aethiops , Humans , SARS-CoV-2/metabolism , Vero Cells , Angiotensin-Converting Enzyme 2/metabolism , Protein Binding , Peptides/pharmacology , Peptides/metabolism
5.
Emerg Microbes Infect ; 12(1): 2211685, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2316089

ABSTRACT

Patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (FLUAV) coinfections were associated with severe respiratory failure and more deaths. Here, we developed a model for studying SARS-CoV-2 and FLUAV coinfection using human pluripotent stem cell-induced alveolar type II organoids (hiAT2). hiAT2 organoids were susceptible to infection by both viruses and had features of severe lung damage. A single virus markedly enhanced the susceptibility to other virus infections. SARS-CoV-2 delta variants upregulated α-2-3-linked sialic acid, while FLUAV upregulated angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). Moreover, coinfection by SARS-CoV-2 and FLUAV caused hyperactivation of proinflammatory and immune-related signaling pathways and cellular damage compared to a respective single virus in hiAT2 organoids. This study provides insight into molecular mechanisms underlying enhanced infectivity and severity in patients with co-infection of SARS-CoV-2 and FLUAV, which may aid in the development of therapeutics for such co-infection cases.


Subject(s)
COVID-19 , Coinfection , Influenza, Human , Pluripotent Stem Cells , Humans , SARS-CoV-2 , Influenza, Human/metabolism , Lung , Virus Replication , Organoids
6.
Viruses ; 15(3)2023 02 27.
Article in English | MEDLINE | ID: covidwho-2268208

ABSTRACT

The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a serious threat to global public health. In an effort to develop novel anti-coronavirus therapeutics and achieve prophylactics, we used gene set enrichment analysis (GSEA) for drug screening and identified that Astragalus polysaccharide (PG2), a mixture of polysaccharides purified from Astragalus membranaceus, could effectively reverse COVID-19 signature genes. Further biological assays revealed that PG2 could prevent the fusion of BHK21-expressing wild-type (WT) viral spike (S) protein and Calu-3-expressing ACE2. Additionally, it specifically prevents the binding of recombinant viral S of WT, alpha, and beta strains to ACE2 receptor in our non-cell-based system. In addition, PG2 enhances let-7a, miR-146a, and miR-148b expression levels in the lung epithelial cells. These findings speculate that PG2 has the potential to reduce viral replication in lung and cytokine storm via these PG2-induced miRNAs. Furthermore, macrophage activation is one of the primary issues leading to the complicated condition of COVID-19 patients, and our results revealed that PG2 could regulate the activation of macrophages by promoting the polarization of THP-1-derived macrophages into an anti-inflammatory phenotype. In this study, PG2 stimulated M2 macrophage activation and increased the expression levels of anti-inflammatory cytokines IL-10 and IL-1RN. Additionally, PG2 was recently used to treat patients with severe COVID-19 symptoms by reducing the neutrophil-to-lymphocyte ratio (NLR). Therefore, our data suggest that PG2, a repurposed drug, possesses the potential to prevent WT SARS-CoV-2 S-mediated syncytia formation with the host cells; it also inhibits the binding of S proteins of WT, alpha, and beta strains to the recombinant ACE2 and halts severe COVID-19 development by regulating the polarization of macrophages to M2 cells.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Polysaccharides , Spike Glycoprotein, Coronavirus , Humans , Angiotensin-Converting Enzyme 2/metabolism , Anti-Inflammatory Agents/pharmacology , Drug Repositioning , MicroRNAs , Polysaccharides/pharmacology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Astragalus propinquus/chemistry
7.
Front Immunol ; 14: 1169034, 2023.
Article in English | MEDLINE | ID: covidwho-2264720
8.
Emerg Microbes Infect ; 12(1): 2195020, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2255344

ABSTRACT

SARS-CoV-2, the causative virus of COVID-19, continues to threaten global public health. COVID-19 is a multi-organ disease, causing not only respiratory distress, but also extrapulmonary manifestations, including gastrointestinal symptoms with SARS-CoV-2 RNA shedding in stool long after respiratory clearance. Despite global vaccination and existing antiviral treatments, variants of concern are still emerging and circulating. Of note, new Omicron BA.5 sublineages both increasingly evade neutralizing antibodies and demonstrate an increased preference for entry via the endocytic entry route. Alternative to direct-acting antivirals, host-directed therapies interfere with host mechanisms hijacked by viruses, and enhance cell-mediated resistance with a reduced likelihood of drug resistance development. Here, we demonstrate that the autophagy-blocking therapeutic berbamine dihydrochloride robustly prevents SARS-CoV-2 acquisition by human intestinal epithelial cells via an autophagy-mediated BNIP3 mechanism. Strikingly, berbamine dihydrochloride exhibited pan-antiviral activity against Omicron subvariants BA.2 and BA.5 at nanomolar potency, providing a proof of concept for the potential for targeting autophagy machinery to thwart infection of current circulating SARS-CoV-2 subvariants. Furthermore, we show that autophagy-blocking therapies limited virus-induced damage to intestinal barrier function, affirming the therapeutic relevance of autophagy manipulation to avert the intestinal permeability associated with acute COVID-19 and post-COVID-19 syndrome. Our findings underscore that SARS-CoV-2 exploits host autophagy machinery for intestinal dissemination and indicate that repurposed autophagy-based antivirals represent a pertinent therapeutic option to boost protection and ameliorate disease pathogenesis against current and future SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 , Hepatitis C, Chronic , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology , Post-Acute COVID-19 Syndrome , RNA, Viral , Antibodies, Neutralizing , Autophagy , Antibodies, Viral , Spike Glycoprotein, Coronavirus , Membrane Proteins
9.
EMBO J ; 42(10): e112234, 2023 05 15.
Article in English | MEDLINE | ID: covidwho-2284890

ABSTRACT

The interferon-induced transmembrane proteins (IFITM) are implicated in several biological processes, including antiviral defense, but their modes of action remain debated. Here, taking advantage of pseudotyped viral entry assays and replicating viruses, we uncover the requirement of host co-factors for endosomal antiviral inhibition through high-throughput proteomics and lipidomics in cellular models of IFITM restriction. Unlike plasma membrane (PM)-localized IFITM restriction that targets infectious SARS-CoV2 and other PM-fusing viral envelopes, inhibition of endosomal viral entry depends on lysines within the conserved IFITM intracellular loop. These residues recruit Phosphatidylinositol 3,4,5-trisphosphate (PIP3) that we show here to be required for endosomal IFITM activity. We identify PIP3 as an interferon-inducible phospholipid that acts as a rheostat for endosomal antiviral immunity. PIP3 levels correlated with the potency of endosomal IFITM restriction and exogenous PIP3 enhanced inhibition of endocytic viruses, including the recent SARS-CoV2 Omicron variant. Together, our results identify PIP3 as a critical regulator of endosomal IFITM restriction linking it to the Pi3K/Akt/mTORC pathway and elucidate cell-compartment-specific antiviral mechanisms with potential relevance for the development of broadly acting antiviral strategies.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Interferons/metabolism , Phospholipids , Phosphatidylinositol 3-Kinases/metabolism , RNA, Viral , RNA-Binding Proteins/metabolism , SARS-CoV-2/metabolism , Virus Internalization , Membrane Proteins/metabolism
10.
Viruses ; 15(1)2023 Jan 04.
Article in English | MEDLINE | ID: covidwho-2271892

ABSTRACT

COVID-19 is still a global public health concern, and the SARS-CoV-2 mutations require more effective antiviral agents. In this study, the antiviral entry activity of thirty-one flavonoids was systematically evaluated by a SARS-CoV-2 pseudovirus model. Twenty-four flavonoids exhibited antiviral entry activity with IC50 values ranging from 10.27 to 172.63 µM and SI values ranging from 2.33 to 48.69. The structure-activity relationship of these flavonoids as SARS-CoV-2 entry inhibitors was comprehensively summarized. A subsequent biolayer interferometry assay indicated that flavonoids bind to viral spike RBD to block viral interaction with ACE2 receptor, and a molecular docking study also revealed that flavonols could bind to Pocket 3, the non-mutant regions of SARS-CoV-2 variants, suggesting that flavonols might be also active against virus variants. These natural flavonoids showed very low cytotoxic effects on human normal cell lines. Our findings suggested that natural flavonoids might be potential antiviral entry agents against SARS-CoV-2 via inactivating the viral spike. It is hoped that our study will provide some encouraging evidence for the use of natural flavonoids as disinfectants to prevent viral infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Molecular Docking Simulation , Flavonoids/pharmacology , Antiviral Agents/pharmacology , Flavonols , Spike Glycoprotein, Coronavirus/metabolism , Protein Binding
11.
mBio ; : e0323821, 2022 Jan 11.
Article in English | MEDLINE | ID: covidwho-2275679

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a serious threat to global public health, underscoring the urgency of developing effective therapies. Therapeutics and, more specifically, direct-acting antiviral development are still very much in their infancy. Here, we report that two hepatitis C virus (HCV) fusion inhibitors identified in our previous study, dichlorcyclizine and fluoxazolevir, broadly block human coronavirus entry into various cell types. Both compounds were effective against various human-pathogenic CoVs in multiple assays based on vesicular stomatitis virus (VSV) pseudotyped with the spike protein and spike-mediated syncytium formation. The antiviral effects were confirmed in SARS-CoV-2 infection systems. These compounds were equally effective against recently emerged variants, including the delta variant. Cross-linking experiments and structural modeling suggest that the compounds bind to a hydrophobic pocket near the fusion peptide of S protein, consistent with their potential mechanism of action as fusion inhibitors. In summary, these fusion inhibitors have broad-spectrum antiviral activities and may be promising leads for treatment of SARS-CoV-2, its variants, and other pathogenic CoVs. IMPORTANCE SARS-CoV-2 is an enveloped virus that requires membrane fusion for entry into host cells. Since the fusion process is relatively conserved among enveloped viruses, we tested our HCV fusion inhibitors, dichlorcyclizine and fluoxazolevir, against SARS-CoV-2. We performed in vitro assays and demonstrated their effective antiviral activity against SARS-CoV-2 and its variants. Cross-linking experiments and structural modeling suggest that the compounds bind to a hydrophobic pocket in spike protein to exert their inhibitory effect on the fusion step. These data suggest that both dichlorcyclizine and fluoxazolevir are promising candidates for further development as treatment for SARS-CoV-2.

12.
J Agric Food Chem ; 71(14): 5535-5546, 2023 Apr 12.
Article in English | MEDLINE | ID: covidwho-2285961

ABSTRACT

Cell entry of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) depends on specific host cell proteases, which are the key targets for preventing and treating viral infections. Herein, we describe miyabenol C and trans-ε-viniferin, two resveratrol oligomers that specifically inhibit SARS-CoV-2 entry by targeting host protease cathepsin L. Several cell-based assays were used to demonstrate the effect of resveratrol oligomers, and their target was identified via screening of antiviral targets. Molecular docking analysis suggested that the oligomers could occupy the active cavity of cathepsin L. The surface plasmon resonance assay showed that the equilibrium dissociation constant (KD) values of miyabenol C-cathepsin L and trans-ε-viniferin-cathepsin L were 5.54 and 8.54 µM, respectively, indicating their excellent binding ability for cathepsin L. Our study demonstrated the potential application of resveratrol oligomers as lead compounds in controlling SARS-CoV-2 infection by targeting cathepsin L.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cathepsin L/chemistry , Cathepsin L/metabolism , Molecular Docking Simulation , Resveratrol , SARS-CoV-2/metabolism , Virus Internalization
13.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: covidwho-2234674

ABSTRACT

Transactive response DNA binding protein 43 kDa (TDP-43) was discovered in 2001 as a cellular factor capable to inhibit HIV-1 gene expression. Successively, it was brought to new life as the most prevalent RNA-binding protein involved in several neurological disorders, such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Despite the fact that these two research areas could be considered very distant from each other, in recent years an increasing number of publications pointed out the existence of a potentially important connection. Indeed, the ability of TDP-43 to act as an important regulator of all aspects of RNA metabolism makes this protein also a critical factor during expression of viral RNAs. Here, we summarize all recent observations regarding the involvement of TDP-43 in viral entry, replication and latency in several viruses that include enteroviruses (EVs), Theiler's murine encephalomyelitis virus (TMEV), human immunodeficiency virus (HIV), human endogenous retroviruses (HERVs), hepatitis B virus (HBV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), West Nile virus (WNV), and herpes simplex virus-2 (HSV). In particular, in this work, we aimed to highlight the presence of similarities with the most commonly studied TDP-43 related neuronal dysfunctions.


Subject(s)
TDP-43 Proteinopathies , Virus Diseases , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , COVID-19/genetics , COVID-19/metabolism , DNA-Binding Proteins/metabolism , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , SARS-CoV-2/metabolism , TDP-43 Proteinopathies/genetics , TDP-43 Proteinopathies/metabolism , Virus Diseases/genetics , Virus Diseases/metabolism
14.
Viruses ; 14(12)2022 12 06.
Article in English | MEDLINE | ID: covidwho-2200867

ABSTRACT

Porcine epidemic diarrhea virus (PEDV), a member of Coronaviridae, causes high mortality in newborn piglets, and has caused significant economic losses in the pig industry. PEDV infection can induce apoptosis, both caspase-dependent and caspase-independent, but the details of apoptosis remain clarified. This study investigated the effect of death receptor DR5 on PEDV infection and its relationship with PEDV-induced apoptosis. We found that DR5 knockdown reduced viral mRNA and protein levels of PEDV, and the viral titer decreased from 104.5 TCID50 to 103.4 TCID50 at 12 hpi. Overexpression of DR5 significantly increased the viral titer. Further studies showed that DR5 facilitates viral replication by regulating caspase-8-dependent apoptosis, and the knockdown of DR5 significantly reduced PEDV-induced apoptosis. Interestingly, we detected a biphasic upregulation expression of DR5 in both Vero cells and piglets in response to PEDV infection. We found that DR5 also facilitates viral entry of PEDV, especially, incubation with DR5 antibody can reduce the PEDV binding to Vero cells. Our study improves the understanding of the mechanism by which PEDV induces apoptosis and provides new insights into the biological function of DR5 in PEDV infection.


Subject(s)
Coronavirus Infections , Coronavirus , Porcine epidemic diarrhea virus , Swine Diseases , Chlorocebus aethiops , Animals , Swine , Vero Cells , Porcine epidemic diarrhea virus/genetics , Proviruses , Virus Internalization , Caspases , Receptors, Death Domain
15.
EBioMedicine ; 87: 104390, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2165227

ABSTRACT

BACKGROUND: The COVID-19 pandemic is an infectious disease caused by SARS-CoV-2. The first step of SARS-CoV-2 infection is the recognition of angiotensin-converting enzyme 2 (ACE2) receptors by the receptor-binding domain (RBD) of the viral Spike (S) glycoprotein. Although the molecular and structural bases of the SARS-CoV-2-RBD/hACE2 interaction have been thoroughly investigated in vitro, the relationship between hACE2 expression and in vivo infection is less understood. METHODS: Here, we developed an efficient SARS-CoV-2-RBD binding assay suitable for super resolution microscopy and simultaneous hACE2 immunodetection and mapped the correlation between hACE2 receptor abundance and SARS-CoV-2-RBD binding, both in vitro and in human lung biopsies. Next, we explored the specific proteome of SARS-CoV-2-RBD/hACE2 through a comparative mass spectrometry approach. FINDINGS: We found that only a minority of hACE2 positive spots are actually SARS-CoV-2-RBD binding sites, and that the relationship between SARS-CoV-2-RBD binding and hACE2 presence is variable, suggesting the existence of additional factors. Indeed, we found several interactors that are involved in receptor localization and viral entry and characterized one of them: SLC1A5, an amino acid transporter. High-resolution receptor-binding studies showed that co-expression of membrane-bound SLC1A5 with hACE2 predicted SARS-CoV-2 binding and entry better than hACE2 expression alone. SLC1A5 depletion reduces SARS-CoV-2 binding and entry. Notably, the Omicron variant is more efficient in binding hACE2 sites, but equally sensitive to SLC1A5 downregulation. INTERPRETATION: We propose a method for mapping functional SARS-CoV-2 receptors in vivo. We confirm the existence of hACE2 co-factors that may contribute to differential sensitivity of cells to infection. FUNDING: This work was supported by an unrestricted grant from "Fondazione Romeo ed Enrica Invernizzi" to Stefano Biffo and by AIRC under MFAG 2021 - ID. 26178 project - P.I. Manfrini Nicola.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Virus Internalization , Pandemics , Receptors, Virus/chemistry , Receptors, Virus/metabolism , Protein Binding , Lung/metabolism , Minor Histocompatibility Antigens/metabolism , Amino Acid Transport System ASC/metabolism
16.
Viruses ; 14(12)2022 12 08.
Article in English | MEDLINE | ID: covidwho-2155311

ABSTRACT

Influenza virus infections and the continuing spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are global public health concerns. As there are limited therapeutic options available in clinical practice, the rapid development of safe, effective and globally available antiviral drugs is crucial. Drug repurposing is a therapeutic strategy used in treatments for newly emerging and re-emerging infectious diseases. It has recently been shown that the voltage-dependent Ca2+ channel Cav1.2 is critical for influenza A virus entry, providing a potential target for antiviral strategies. Nisoldipine, a selective Ca2+ channel inhibitor, is commonly used in the treatment of hypertension. Here, we assessed the antiviral potential of nisoldipine against the influenza A virus and explored the mechanism of action of this compound. We found that nisoldipine treatment could potently inhibit infection with multiple influenza A virus strains. Mechanistic studies further revealed that nisoldipine impaired the internalization of the influenza virus into host cells. Overall, our findings demonstrate that nisoldipine exerts antiviral effects against influenza A virus infection and could serve as a lead compound in the design and development of new antivirals.


Subject(s)
COVID-19 , Influenza A virus , Influenza, Human , Humans , Influenza, Human/drug therapy , Virus Internalization , SARS-CoV-2 , Nisoldipine/pharmacology , Nisoldipine/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
18.
Ind Crops Prod ; 187: 115338, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2061285

ABSTRACT

Carlina acaulis plant is a potential target for the industrial production of phytochemicals that display applicability in pharmacy and medicine. The dry roots of C. acaulis contain up to 2 % of essential oil, the main component (up to 99 %) of which is carlina oxide [2-(3-phenylprop-1-ynyl)furan]. This compound shows multidirectional biological activity, including antibacterial and antifungal properties. Here, we evaluated the capacity of carlina oxide to inhibit the interaction between SARS-CoV-2 and its human receptor in vitro and in silico. A bioluminescent immunoassay was used to study the interaction between the receptor binding domain (RBD) of viral spike protein and the human angiotensin-converting enzyme 2 (ACE2), which serves as a receptor for viral entry. A dose-effect relationship was demonstrated, and a concentration of carlina oxide causing half-maximal inhibition (IC50) of the RBD:ACE2 interaction was determined to be equal to 234.2 µg/mL. Molecular docking suggested the presence of carlina oxide binding sites within the RBD and at the interface between RBD and ACE2. Finally, this study expands the list of potential applications of C. acaulis as a crop species.

19.
Viruses ; 14(9)2022 09 16.
Article in English | MEDLINE | ID: covidwho-2043975

ABSTRACT

Frequent outbreaks of the highly pathogenic influenza A virus (AIV) infection, together with the lack of broad-spectrum influenza vaccines, call for the development of broad-spectrum prophylactic agents. Previously, 3-hydroxyphthalic anhydride-modified bovine ß-lactoglobulin (3HP-ß-LG) was proven to be effective against human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and it has also been used in the clinical control of cervical human papillomavirus (HPV) infections. Here, we show its efficacy in potently inhibiting infection by divergent influenza A and B viruses. Mechanistic studies suggest that 3HP-ß-LG binds, possibly through its negatively charged residues, to the receptor-binding domain in the hemagglutinin 1 (HA1) subunit in the HA of the influenza virus, thus inhibiting the attachment of the HA to sialic acid on host cells. The intranasal administration of 3HP-ß-LG led to the protection of mice against challenges by influenza A(H1N1)/PR8, A(H3N2), and A(H7N9) viruses. Furthermore, 3HP-ß-LG is highly stable when stored at 50 °C for 30 days and it shows excellent safety in vitro and in vivo. Collectively, our findings suggest that 3HP-ß-LG could be successfully repurposed as an intranasal prophylactic agent to prevent influenza virus infections during influenza outbreaks.


Subject(s)
COVID-19 , HIV Fusion Inhibitors , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Animals , Antibodies, Viral , Cattle , Disease Outbreaks , Hemagglutinin Glycoproteins, Influenza Virus , Hemagglutinins , Humans , Influenza A Virus, H3N2 Subtype , Lactoglobulins/pharmacology , Mice , N-Acetylneuraminic Acid , Orthomyxoviridae Infections/prevention & control , SARS-CoV-2
20.
Mol Ther Nucleic Acids ; 30: 226-240, 2022 Dec 13.
Article in English | MEDLINE | ID: covidwho-2042066

ABSTRACT

mRNA and lipid nanoparticles have emerged as powerful systems for the preparation of vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. The emergence of novel variants or the necessity of cold chain logistics for approved mRNA vaccines undermines the investigation of next-generation systems that could preserve both potency and stability. However, the correlation between lipid nanoparticle composition and activity is not fully explored. Here, we screened a panel of ionizable lipids in vivo and identified lead lipid nanoparticles with a branched-tail lipid structure. Buffer optimization allowed the determination of lyophilization conditions, where lipid nanoparticle-encapsulated mRNA encoding SARS-CoV-2 spike protein could induce robust immunogenicity in mice after 1 month of storage at 5°C and 25°C. Intramuscularly injected lipid nanoparticles distributed in conventional dendritic cells in mouse lymph nodes induced balanced T helper (Th) 1/Th2 responses against SARS-CoV-2 spike protein. In nonhuman primates, two doses of 10 or 100 µg of mRNA induced higher spike-specific binding geometric mean titers than those from a panel of SARS-CoV-2-convalescent human sera. Immunized sera broadly inhibited the viral entry receptor angiotensin-converting enzyme 2 (ACE2) from binding to the spike protein in all six strains tested, including variants of concern. These results could provide useful information for designing next-generation mRNA vaccines.

SELECTION OF CITATIONS
SEARCH DETAIL